If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9k^2+6k-1=0
a = 9; b = 6; c = -1;
Δ = b2-4ac
Δ = 62-4·9·(-1)
Δ = 72
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{72}=\sqrt{36*2}=\sqrt{36}*\sqrt{2}=6\sqrt{2}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6\sqrt{2}}{2*9}=\frac{-6-6\sqrt{2}}{18} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6\sqrt{2}}{2*9}=\frac{-6+6\sqrt{2}}{18} $
| -2f-4=-6f-12* | | 0.5x(-x=3)=x-5 | | 15(x+1)-7(x+()=4x | | 3-(2x+2)2(x+3)=x | | 5-2x=15x | | x−8=10+3x | | x^2+x/5-1/5=0 | | 2-2s=3s/4s+13 | | -2m+16-8(m-1)=7m-(5m-5)-9m+1 | | 7c-7=6c+2 | | 4x+7=x9-3 | | (3+x)(x-2)=14 | | -6+x/5=-4 | | 2x+5=-4x-2 | | 5(w+9)=9w+25 | | 200=5x2 | | -7p-5(2-3p)=5(p-3)-4 | | 3x+2+6×-1+42+24=180 | | a/2+6=18 | | 1/4w=21/2 | | 4x-30=5x-70 | | 48+5/6r/r=-1/2 | | 20+x^2=12x | | 4x/9-4=20 | | -16t^2+56t=33 | | 1=0.2x-0.6-35 | | (x)+(2x)+90=180 | | -16t^2+56t+33=0 | | 7-2z=19 | | 2/5m=1/3 | | 3(3z+1)-8=58 | | 360=246+62+-30+x |